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Topological models of cellular structures 
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Received 22 October 1990, in final form 18 December 1990 

Abstract. A method for constructing topological models of cellular structures is described. 
It is based on lattices with topologically unstable sites, which belong to more than zs 
polygons (zs = 3  i n  2 ~ ) ,  and on rules which allow removing this degeneracy. For every 
value ofthe coordination number z and fora given rulqthereare Q ( z )  stableconfigurations, 
called states. Cellular models are associated with distributions of states an the lattice sites. 
me distribution of cell sides as well as other characteristics such as the correlations among 
cells can be derived. Many models of statistical physics may be used (king, Potts, cellular 
automata). The ease z = 4  is discussed and observed to agree with some experimental or 
simulation results. 

1. Introduction 

As emphasized by various authors (Thompson 1917, Weaire 1983, Weaire and Rivier 
1984) cellular structures abound in Nature and are of interest in many scientific fields 
such as metallurgy (polycrystals, Meijering 19531, geology (crack networks in basalt 
flows, Smalley 1966), biology (eg: biological tissues, Lewis 1928) etc. They are also 
widely used as models, for example in order to describe the atomic-scale structure of 
iono-covalent glasses (Sadoc and Mossen 1982, Marians and Burdett 1990), nr  to 
account for the large scale structure of the universe (Coles 1990). 

The present paper will focus on two-dimensional ( 2 0 )  space-filling random cellular 
structures although the method that we describe may as well be applied to 3~ cellular 
structures. Topological characterizations of these structures almost invariably include 
the distribution P ( n )  of the number n of edges of cells (called here n-cells) or the 
n-dependence of the mean number m.( 1) of sides of the first neighbour cells of n-cells. 
The mean number m,(i) of sides of the ith neighbour cells ( i >  1) of n-cells has also 
been investigated by computer simulation (Nakashima el al 1989). An important 
semi-empirical law, the Aboav-Weaire law (Aboav, 1970,1980, Weaire 1974). expresses 
that m,(l) is linearly related tn l / n  by 

m,( 1) = 6 - a + ( 6 a  + w 2 ) / n  (1) 

where p2 is the variance of the distribution of n: w 2 = ( n 2 ) - ( n ) * ,  with ( n ) = 6  as a 
consequence of Euler’s relation in 2~ (Weaire and Rivier 1984) and (nm,( l ) )=p2+36 
(Weaire 1974). In many natural random cellular structures, the parameter a is of the 
order of 1.2 (Ahoav 1980). In ZD, only two transformations are needed to describe the 
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Figure I.  ( a )  The two different states for i =4, the associated Sk, ( k  = f, -, j = I , .  . . ,4) 
values. Neighbour switching TI is simply described here by 'spin' Ripping (+ + - or - - +, 
the cells, with Sk, = I ,  which are not neighbours became neighbours and vice versa). ( b )  
An example of B distribution of states on a square lattice, the corresponding values of the 
number n of cells rider and one realization of the associated cellular structure. ( c )  A lattice 
with z = 5  ( a  =3' ,4 ,3 ,4  net in SchliRi notation), the numbering convention (circled 
numbers) and one among the five states on two different lattice sites. ( d )  A triangular 
lattice i = 6  and one among the 14 states in (a), ( c ) ,  ( d )  stable configurations have been 
drawn; bold lines represent the added cell sides. 

progressive disordering of a hexagonal network. They are neighbour switching (Tl, 
figure 1) and vanishing of cells (T2, Weaire and Rivier 1984). The Aboav-Weaire law 
is derived with a = 1 when the evolution of a froth under the two previous ZD elementary 
structural transformations is studied, assuming no correlation beyond nearest neigh- 
bours (Blanc and Mocellin 1979, Rivier 1985). As emphasized by Weaire (1983) and 
Fortes and Andrade (1989), the simple linear law (1) is still not fully understood and 
may be not more than a good approximation. 

We describe in section 2 a method which allows constructing topological models 
of cellular structures in which both P(n) and m,(i) ( i =  1,2 , ,  ..) as well as other 
characteristics may be analytically or numerically calculated for the simplest cases and 
computer simulated for the more complex cases. The models are topological as they 
give the relative repartition of cells and does not need or give information about angles 
and edge lengths. 

2. The method 

The method, which defines a transform of a distribution of states on a lattice, is based 
on the following (figure 1). 
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( I )  A lattice with topologically unstable sites. Every site is characterized by its 
coordination number z which is the number of edges merging in that vertex. In ZD, 
the vertices with z > z, = 3 are structurally unstable, as their properties change by small 
deformations, while z, = 4 in 3 ~ .  The fraction of vertices with z, = 3, 
withf,<l. 

(2) A rule to remove the degeneracy of the unstable vertices until only zi = z, (3  
in 2 ~ )  vertices are left. This rule produces a set of Q ( z , )  possible stable configurations, 
called states. 

, z; ,  1 s  S,GZ, -2) 
are specified (for example 112213) for z, = 5 ,  figure I(c)) and assigned to every 2,-vertex 
of the lattice. They are used for calculating the number of sides n and for defining the 
neighbouring cells. 

(3 )  A criterion for distributing the various states on the lattice sites. It may for 
example be a set of probabilities pu ( E j  pu = 1 )  which are used at every 2,-type site to 
chose among the Q(z.)  possible states. Interactions among the various sites may also 
be defined on the starting lattice. 

As we have only considered, up to now, rules which do not create or annihilate 
cells, we associate a cell of the topological cellular model with every polygon of the 
lattice, or spherical polygon (Coxeter 1973) if a spherical tessellation is considered. 
The topological model is deduced from the previous distribution of states. The number 
of cell sides n is obtained by summing up the S, values which are inside the 
corresponding lattice polygon (figure l (b) ) .  The method will be discussed for a square 
lattice ( z  = 4, fd = 1, section 3) and some results obtained for z = 5, 6 will be quoted 
(section 4). Models will be compared with some actual structures and to simulation 
results. 

The stable configuration is obtained by adding 2-3  sides at every z-vertex 
(Thompson 1917, ch 8, figure 158). Every added side is connected at least to one added 
side for z > 4  (figure I(c, d ) )  and the associated graph is a connected graph without 
cycles, that is a tree (Berge 1970). The z lattice cells which meet at a z-vertex are 
numbered from 1 to z according to the following convention: a reference vertex is 
defined and the z cells meeting at this vertex are numbered. The numbering at every 
z-vertex belonging to the same family (same SchlaRi sequence) is obtained by rotating 
the reference vertex and its z incoming sides in the positive sense by the smallest angle 
which brings both configurations in coincidence (figure l (c ) ) .  This is possible as we 
allow, fnecessary,  defining angles and distances on the starting lattice. In that way, 
a clear meaning is attributed to a distribution of identical states on z-sites. 

S, is the number of vertices of polygon number j at the considered lattice site. 
With a given added-side configuration and its z incoming sides, we associate all different 
circular permutations of the Skj ( j  = I ,  , z )  values among the z numbered positions. 
The total number of states is Q ( z ) ,  that is 14 states for z =6, which are derived from 
the four configurations (figure I(d)): 

Foreverys ta tek(k=l ,  , Q ( z j ) ) ,  zi numbers Skj (z , )  ( j =  I ,  

C,={122214} C,={131313) C3=1123123) C4={132132} 

The set of Q ( z )  states is closed with respect to transformation TI (figure l(a)), that 
is any neighbour switching operation which may act on a given state ( ( 2 - 3 )  possible 
operations) transforms it into a state of the set. Identity and neighbour switching 
transformations do  not constitute a group (see the appendix). A configuration like C, 
becomes identical with C, by a circular permutation in the negative sense of rotation 
and both may be considered as one configuration. This is the implicit definition used 
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by Thompson (1917) who has considered the added-side configurations (AX) but has 
not taken into account the various configurations of z sides which may be associated 
with a given ASC. 

The sum 

E h =  1 Skj=32-6  (2) 
j = 1  

is independeni of ihe configuraiion <3z  -6  is simpiy obiained from the state S i ,  see 
the appendix). The sum Ex may also be calculated by considering z half great circles 
meeting at two poles on a sphere and two states among the Q ( z )  states. We obtain 
equation (2) from the Euler-Poincart characteristic: 2 = V - E + F with 2(2 - 2) vertices 
( V ) ,  E, edges (E)  and z faces ( F ) .  The number of states Q ( z )  is 1,2, 5, 14 for z=3 ,  
4, 5, 6 respectively. It increases exponentially with z, being 4.78 x lo8 for z = 20. Q(z) 
is . .  given 'iy a nur,;er (Knuih 1873, yiennot 1996, Le Casr i88ij: 

Q(z)= c;;!4/(z-l). (3 )  

In spite of the large number of states for large z values (Q(z)W C3''4' when z + a), 
a relation, giving the distribution Ps( i, z )  ( i  = 1,2,  . . . , z -2) of the values of Skj for a 
fixed j ,  can be derived (Ps(i, m) = i/2'+'). Ps(i, z )  is useful for calculating P ( n )  for a 
distribution of equiprobable and independent states on the sites, in particular in the 
case of spherical tessellations or of tessellations on surfaces topologically equivalent 
to a sphere. With two poles and z half great circles, we obtain for z + m and n P 0: 

P ( n ) =  n(n2-1)/(2" x24) 

with (n) = 6. This distribution may therefore be compared with P (  n )  for planar cellular 
structures with n P 2. In fact, it differs little from the distribution of cell sides of the 
2~ Johnson-Mehl froth obtained for continuous nucleation with constant growth rate 
(Frost and Thompson 1987, Le Caer 1991). 

The Skj also allow defining the neighbours of a given cell. If we consider a cell of 
the starting lattice with nL sides, its corresponding cell (n-cell) in the topological model 
will have two types of neighbours, as no neighbour switching takes place between 
different lattice sites: (i) nL unconditional neighbours, (ii) n - nL conditional neigh- 
bours given by the S, values inside the considered lattice cell. At every vertex, Skj - 1 
lattice cells belong to that class of neighbours. 

Neighbour switching between different sites may be performed by attributing a 
value to the bond connecting these two sites (for example 0 for no switching and -1 
for switching). 

3. The square lattice 

For z = 4 on the square lattice or o n  a lattice topologically equivalent to a square 
lattice, we introduce a 'spin' S = *f (figure l(a)). Labelling as 1 the upper right comer 
of the central square in figure l ( b )  and as 2 the upper left corner etc, the number of 
sides n (4 < n < 8) is given by 
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while 

nm(n,1)=10+9n/2- -  x (-1)’M; + E  SjM; ( 5 )  
2 j - 1  l 4  j = ,  

where nm(n, 1) is the total number of sides of the first-neighbour cells of a given 
central n-cell. The average over all configurations of spins, for a fixed n, is nm.(l) = 
nm(n, 1). Both M: are given by an algebraic sum of three spins at every corner of the 
outer square (figure 1( b ) )  which includes the nine interior squares. The relative position 
of Sj and M, is also shown in figure l (b) .  M j  is the sum of the corner spin plus or 
minus the sum of its two neighbour spins, one per side of the outer square. The last 
sum in equation (5) is due to conditional neighbours which are responsible for the 
presence of pair correlations in that term. 

An exact hut lengthy expression has also been calculated for s (n)m(n,2)  where 
s ( n )  is the number of second-neighbour cells of a central n-cell. If the spins are 
independently distributed on every site with a probability p for S=f ,  a symmetric 
P ( n )  distribution (table 1) with p 2 = 4 p ( l  - p )  is obtained. 

The average, for a fixed n, yields: 

m.( 1) = p + 4 +  (13 -6p) /n  +( 1 -2p)A,(n)/n (6) 
where A,(n)  is given in table 1 with, as expected, (nm. ( l ) )=p2+36 .  Moreover, - 
s, = s ( n ) :  

s, = n (  m,( 1) - 4) (7) 

(8) 

sd,(n) = (12- n)”2/(2n). (9) 

and 

m. (2) = s ( n ) m ( n ,  2)/s. = { 6 +  3p2+ n(5mn(1) - 19 - ~ ~ / 4 ) ) / { 4 ~ 1 ~ ( 1 ) - 4 ) } .  
For p =+, the standard deviation of the distribution of m(n, 1) as a function of n is 

This simple model already grasps many characteristic features of cellular structures. 
With the present rule, the Aboav-Weaire law (equations (1) and (6)) is only exact 

for p = f  with a = 1.5 but is otherwise a very good approximation (relative error less 
than -2% for p as small as 0.1) with a least-square value uL ( 4 s  n sX), given by (10) 
which may be useful for comparison with experimental results (1.5 S uL< 1.777): 

uL = 1.5 + 3 MZ{ (1225+ 1481M2)/( 1 + Mz)}/ 14618 M = 2 p - 1  (10) 
The weak dependence of “(2) on n (table 1) is also observed in computer 

simulations of the coarsening of random cellular systems (Nakashima et a1 1989). 

Table 1. Distribution of the number of cell sides P(n), A , ( n )  term in equation (6). and 
m,,(2) for p= f  (equation (8)) for i = 4  on a square lauice. 

n 4 5 6 7 8 

m,(Z) ( p = O . 5 )  6 6.02 6.0385 6.0555 6.0714 
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The standard deviation sd , (n)  has been observed to be very well described by a 
linear dependence on m,(l) for the random Voronoi froth as well as for the Voronoi 
tessellation generated from eigenvalues of complex random matrices with respective 
slopes of 0.241 and 0.162 (Le Caer and Ho 1990). To a good approximation (mean 
absolute deviation 6 x  lo-'), sd , (n )  (equation (9)) is given by 

sd , (n )  =0.1824m,(l) -0.922. (11) 
Finally, as some experimental or simulation results also show symmetric distribu- 

tions P( n) with negligible contributions for n < 4 or n > 8, we have compared their 
P ( n )  with the calculated ones. The agreement is, to our surprise, satisfactory in a wide 
p range (table 2). It will however be necessary to introduce switchings between 
neighbouring sites or (and) face disappearances in order to create some cells with 
n = 3 or n 3 9 and to allow varying m4( 1) and mR( 1). We will also have to confirm that 
the correlations between cells are correctly represented by the model. 

This is the case for the hard disk simulation (table 2, Fraser 1991 and to be 
published). Simulations of dense ZD liquids, with particles interacting through a 
truncated Lennard-Jones pair potential which is short-ranged and purely repulsive, 
have been performed by Glaser and Clark (1990). Besides P ( n )  for Voronoi tessellations 
(table 2), they have calculated the distribution of disclination charges n, (inset of 
figure I C  of their paper.) Some bonds of the Delaunay tessellation are removed in 
order to tile the plane with quadrilaterals and triangles. The resulting structure is 
compared with the Collins tiling model composed of squares and equilateral triangles. 
A charge n, = 0 is attributed to the four allowed local configurations in the latter 
model. The charges n, # 0 characterize deviations from this ideal tiling. It is striking 

Table 2. Comparison between experimental or simulated distributions and calculated 
distributions (in brackets, table 1) for z = 4 ,  here on a lattice topologically equivalent to a 
square lattice: (i) P,,,(n) for a cellular tissue in a human amnion (Lewis 1931): 1000 cd ls ,  
PCxD(3) =0.004and P~, , (9)=0.007 (PmodJ3) = PmDdc,(9) =O). (ii) P,.,(n) fortheepidermal 
epithelium of the cucumber (Lewis 1928) 1000 cells, Pc,,(9) =0.001 (Pmodc,(9) =O). 
( i i i )  Cellular arrays obtained during upward solidification of Pb-iOwt% TI: a typical 
distribution (Nguyen Thi el al 1990). (iv) Monte Carla simulation far hard disk models 
in 2 0 :  distribution PT,m(n) for the associated Varonoi tessellation and, for example, a 
pressure of  8.05kTx d-' i d  hard-disk diameter) (figure 6 of Fraser er 01 1990 and personal 
communication). (v) Monte Carlo simulation for a 2 0  liquid with 896 panicles and a 
truncated Lennard-Jones (TU) pair potential: P,,,(n) (Voronoi tessellation) and disclina- 
tion charge distribution Ps,m(nD) for a number density of  0.83 (Glaser and Clark 1990). 

n 4 5 6 7 8 

Human amnion 0.054 (0.052) 0.248 (0.248) 0.397 (0.399) 0.241 (0.248) 0.049 (0.052) 
( p  = 0.645) 
Cucumber 0.020 (0.033) 0.251 (0.231) 0.474 (0.473) 0.224 (0.231) 0.030 (0.033) 
(p=0 .763)  
Pb-TI alloys 0.02 (0.020) 0.21 (0.205) 0.55 (0.55) 0.19 (0.205) 0.03 (0.020) 
( p  = 0.827) 
hard disks 0.001 (0.007) 0.146 (0.140) 0.709 (0.706) 0.141 (0.140) 0.003 (0.007) 
(p=0.907) 
2 0  liquid, TLJ O.OOO(0.004) O.lI4(0.110) 0.775 (0.773) 0.109 (O.ll0) 0.002(0.004) 
( p  = 0.933) 
2D liquid, n = 6 + n ,  O.OlO(O.020) 0.218 (0.204) 0.554(0.551) 0.200(0.204) 0.019(0.020) 
( p D =  0.828) 
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to  observe that the distribution of n, looks like P(n) if we define n =6+nD,  with a 
probability po which differs from p (table 2 ) .  For number densities of 0.70 and 0.85, 
we also obtain Prob({In,ls 1)=0.905 and 0.975 (with p,=O.679 and 0.873) as com- 
pared with simulation values of 0.884 and 0.980 respectively. 

In conclusion, it seems that the z = 4 models may serve as a zeroth-order approxima- 
tion ofthe topology of some actual structures. The question of the connections between 
these models and natural structures is therefore raised. Our structures are homogeneous 

( n )  = 6. Randomness is also present but these structures are not in statistical equilibrium 
as defined by Rivier (1985,1986) in his statistical mechanics theory of random tissues: 
our structures are not invariant under structural transformations such as TI and T2 
(introduction) as both will for example create triangles which do not exist for z =4. 
As any lattice topologically equivalent to a square lattice gives the same result as above, 

the actual systems but we still ignore the deep meaning of the previous observations. 
In a very recent paper, Jones (1990) emphasizes that 'although it is mysterious, the 
evidence for a connection between knot theory and statistical mechanics is substantial'. 
It is not obvious that this remark is far from our subject as topology is the relevant 
geometry for cellular structures (Rivier 1986) and also as striking similarities exist 
between the two states of figure l ( a )  and the two states of the Kauffman model (Jones 
1990) which determine how the crossings in a link will be eliminated. 

Topological models may also be associated with distributions of spins given by 
king models. The side-number distribution P ( n )  can, for example, be exactly deter- 
mined for a ferromagnetic king model on a square lattice having only nearest-neighbour 
couplings. Equation (4) is used to calculate the moments pk = ( ( n  -6)'). By symmetry, 
all odd-moments are zero and P(n)  is therefore symmetric with respect to n=6.  As 
the even moments only depend on four spins located on the vertices of the central 
square of figure l ( b ) ,  they may all be expressed as a function of the two-pair correlation 
coefficients and the quartet correlation coefficient which can be defined on that square: 

- -A h.. rnnr+r.sr+inn the<, .st;Lf., thn mnrtr.l;nt cnsm-f i l l inn  =-A th- FIIIPr'E relgtinn 
Yll" "J  ..".LIL.YILL".. L. .UJ  S Y L t O A J  L 1 . l  C"...,LIY.I.L "1 "YY*'-L."a.'6 Y.." LL... I Y L . .  1 ....-..-.. 

'ue suggest that i! is the t.Xis!en% of twO-s!atP t.n!i!ies which has some connedion wit!! 

XI =4(S,S,+,) x2 = 4(S,Sj+J x I 2 =  I6(s,S&S4) (12) 

where j has any value between 1 and 4. These correlation coefficients have been 
determined exactly at all temperatures T /  T, (see for example Khatun et ai 1990 and 
references therein). With d = 2x, -x2,  equations (4) and (12) yield: 

p 2 = 1 - d  p4 =$+3xI2/2-4d 

P(4) = P(8) = ( 1  + x 1 2 ) / 1 6 - d / 8 =  P,(4)+ GIJ16- Gd/8 

P(5)=P(7)=(1-x, ,) /4=Pr(5)-G,,/4 (13) 

P(6) =3(  1 + x 1 2 ) / 8 + d / 4 =  Pr(6) +3G,,/8+ G d / 4  

where G,, = x,?-  M4, Gd = d - M 2  and M is the magnetization. As expected, P(6) is 
increased (for T/T ,#O,  m) (see figures 3-5 of Khatun et a1 for the temperature 
dependence of the xs)  with respect to P(6) in a distribution of non-interacting spins 
with the same magnetization, that is p = ( 1  + M ) / 2  in P,( n) = P(n) of table 1. On the 
contrary all the other P ( n ) s ,  n #6, are decreased. 

The model associated with the Kagomt net (z=4) ,  which is a quasi-regular 
tessellation (Coxeter 1973, Frank and Kasper 1958) built from hexagons and triangles, 
has also been studied, According to the value of p, bimodal P(n) distributions, coming 
from the two different populations of polygons, are calculated (Le Caer 1991). For 
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z = 4, the chosen rule is the neighbour switching TI transformation which is simply 
described by spin flipping (figure l ( a ) ) .  The spin description must not be pushed too 
far as a cellular structure may be described differently if the starting lattice is a square 
(P(6) = 1, ferromagnetic configuration at 0 K), a Kagomt net ( n  = 6 for p = 0 but n = 3 
and 12 for p = l ) ,  a triangular lattice or any other lattice. 

Triangle creation can be included in the rule and gives rise to an increased number 
of states. The distribution P(n) calculated for a random creation of triangles on the 
vertices ofthe cellular structure associated with a square lattice will be published later. 
The use of bonds between lattice sites (end of section 2) may lead to significant cell 
annihilation if the density of bonds with non-zero values is large enough and constitute 
an interesting extension of the method for square lattices. 

4. Some results lor z > 4  

For z > 4, calculations are not as simple as for z = 4 but raise no major difficulties. In 
particular numerical values may be precisely obtained with a microcomputer. For any 
value of z, the distribution P(n) can also be exactly determined in the case of 
equiprobable (pi = 1/Q(z))  and independent states on every lattice site (Le Caer 1991). 
Many tilings which are worth being investigated by the present method are described 
by Grunbaum and Shephard (1987). Calculations of the distributions P(n) and of 
m,,( 1) have been performed for z = 5 and the lattice of figure l (c) ,  which is topologically 
equivalent to a basic net occurring in complex alloys structures (Frank and Kasper 
1958, Sadoc and Mosseri 1982), and for z = 6  on the triangular lattice (figure l (d) ) .  
In both cases, n goes from 3 to 12 (4(z-2) for z = 5 ,  3(2-2) for z=6) .  Figures 2 and 

U,', 1 = L,, , , , , \ / .L*=L.J ,  ,*, U - ,.,ro, all" ,U, 1 -U, 

p I =L 14, i = 1,. . . ,14  ( w 2 =  2.5867, a =0.974). Three conclusions may be drawn. 

show- ihe for = 5 ,  pi ~ I \  n : ~ . T i  ~ - 1 c 7 1 . 4  - - < . n o , - - > c - - - - <  

Figure 2. Mean number of sides "!.(I) of n-cells as a function of n (open circles 1 = 4 ,  
p = O . 2 5 ,  square lattice, full circles z = 5 ,  p, = 0 . 2 ,  lattice of figure I ( < ) ,  full squares z = 6 ,  
p ,  =A, triangular lattice). Full curves correspond to the best fits with the Aboav-Weaire 
l aw  (equation (I)) with (1 = 1.565, 1.198 for z=4, 5 respectively. 
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b 

0 + 
I 

P 

i 

8 2.6 p1=1/14 

+ p (ChenMsl.) 

p Voronol 7 A 2 5  p1=0.2 

1 
I . . -  - 

Figure 3. Distribution P(n) of the number n of cell sides far i = 5, 6 (lattices of figure 
l(e), ( d ) ) ,  for a random Varonoi tessellation (Le Cakr and Ho 1990) and for the domain 
~ t r u c t ~ r e  in thin films of glassy As& (Chen el al 1984). 

(i) The Aboav-Weaire law is not rigorous for the chosen rule but is again a very 
good approximation in many cases. For z = 6 ,  strong deviations from equation ( 1 )  
occur, mainly for n = 3 and for n > 8, as also seen for soap froths and for Voronoi 
tessellations (Aboav 1980, Le Caer and Ho 1990). 

(ii) The values of R (figure 2) are in some cases almost exactly 1.2 which are also 
typically found in natural structures (Aboav 1980). Similar values are still calculated 
for the case of non-equiprobable states. 

(iii) The P ( n )  distributions are similar for z = 5 and z = 6. They are realistic as 
shown in figure 3 where they are compared with actual distributions. However, P(n) 
for equiprobable and independent states does not account for the observed values in 
2~ soap froths (Stavans and Glazier 1989) as, for example, P(5) and P(6)  are too small. 

5. Conclusions 

The method that we have described is useful for creating models of cellular structures 
and for studying their topological properties. Like the method of Sadoc for amorphous 
structures (see Sadoc and Mosseri 19821, it associates a disordered system with an 
ordered one. The next step will be to include cell creation and cell annihilation in the 
rule while keeping the advantages of working on lattices. Both topological transforma- 
tions TI and T2 are needed to reach statistical equilibrium (Rivier 1986) which may 
be worth investigating with the present method. Cellular structures may also be 
associated with king models (z  = 4). Potts models ( z  > 4) or cellular automata. Tessella- 
tions in curved spaces (Sadoc and Mosseri 1982) constitute obvious extensions of the 
method and preliminary results have been obtained. Finally, it would be interesting 
to try to define side lengths and angles in the cellular structures. 
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Appendix 

The neighbour switching transformations are represented here by one-dimensional 
matrices T with z elements. I f  the matrix elements ( 2 - 4  zeros, two 1 and two -1) are 
written on a circle, the f l  and -1 alternate and possibly separated hy groups of zeros. 
We adopt the following notation: T;,, means T(i) = +e, T ( j )  = - e ,  T ( k )  = +e and 
T(I)=-e,  with e = f l .  

The result of the neighbour switching transformation T;kr applied to a state S,  is 
simply obtained by adding the elements of both matrices. The transformation is, 
however, impossible if the resulting matrix contains a zero or a value of (z - 1 )  or two 
successive 1 or less than two 1 (any added-side configuration has at least two ends). 
Any T;,, cannot act on any state and the product of two operations cannot be always 
defined. For example, the neighbour switching T:,,,= (1  -1100-1) ( z  = 6 )  transforms 
the state (122214) (configuration C , ,  section 2) into the state (213213) which belongs 
to configuration C, but T:,,, cannot act on (412221) to give (503220). Tl,,, cannot 
operate on (213213) to give (222222) (there are no added-side cycles). For a given z, 
all states may be generated by applying the neighbour switching transformations to a 
S,  = ( 1 ,  z -2 ,1 ,2 ,2 ,  . . . , 2 )  state and to the states derived from S,  etc, until a closed 
set is obtained. 
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